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A theory is developed to predict the motion of Nneutrally buoyant spheres suspended 
in laminar flow between parallel plates. The spheres are at large separation yet nearer 
each other than the duct walls, and the Reynolds number is small. In  this parameter 
range, viscous interactions are larger than inertial effects, and can be represented in 
terms of a superposition of ‘strainlets’. Several examples are given to show this 
viscous interaction effect. Near the leading edge of a front of spheres or near the 
trailing edge significant lateral migration velocities can occur, being a t  least one order 
of magnitude larger than inertially induced migration velocities. This phenomenon 
may have a negative effect on ‘chromatographic ’ separation schemes, affecting 
particle concentration, recovery and resolution. 

1. Introduction 
The motion of small particles in a viscous medium in which the particle number 

per unit volume (concentration) varies from dilute to concentrated suspensions is 
found in a wide variety of processes. Examples include (0 ’Neil1 198 1 ) : suspension and 
polymer rheology (Russel 1981), continuum mechanics (Drew 1983), and diffusional 
transport processes in suspensions of Brownian particles, erythrocyte motion in 
capillary blood flow, gel permeation chromatography, field flow fractionation, flow 
of fibre suspensions in papermaking processes and of latex particles in emulsion based 
paints, cross-flow filtration of concentrated suspensions, ferro-fluid rheology, shear- 
gradient coagulation in hydrosols, emulsification mechanisms in colloid mills and the 
motion of suspended rock crystals in molten rocks. 

Since Stokes’ celebrated work (Stokes 1851) on the motion of particles in viscous 
flow at small Reynolds numbers, a plethora of studies has appeared in the literature. 
New developments and extensions have accounted for such effects as particle 
rotation, non-spherical geometry, inertial effects, wall effects, particle-particle 
interactions, density effects, liquid droplets and gas bubbles, and the inclusion of 
electrical and magnetic forces acting on the particles (Batchelor 1976). 

Of specific interest here is the motion and behaviour of neutrally buoyant solid 
spherical particles suspended in laminar flow moving in a non-porous duct under 
near-creeping-flow conditions. Although the Reynolds number of the bulk flow can 
never be exactly zero, the relative importance of viscous versus inertial effects for 
low-Reynolds-number hydrodynamics is of interest in the creeping-flow limit. 
Various researchers (Ho & Leal 1974; Vasseur & Cox 1976; Ishii & Hasimoto 1980; 
and Altena & Belfort 1984) have solved the integral equations (Cox & Brenner 1968) 
for the inertially induced lateral migration of single neutrally buoyant particles 
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moving in Poiseuille flow in non-porous and porous ducts. Although ‘asymmetric ’ 
migration for the sedimentation of interacting particles has been analysed (Hocking 
1964; Bretherton 1964) and measured (Koglin 19?l), the lateral migration of 
interacting Stokesian particles moving in a homogeneous but bounded Poiseuille flow 
has not. The reasons for addressing this question are ( 1 )  to obtain an estimate of the 
size of the viscous effects and conditions under which they are important relative to 
the inertial effects, and (2) to lay the foundation for extending the single-particle work 
(Cox & Brenner 1967, 1968) to three boundaries (two particles and enveloping 
boundary) for non-porous and porous walls (Schonberg, Drew & Belfort 1986). 
Previous research, focused on two-body interactions in Couette flows, has shown that 
these viscous effects can cause noticeable temporary lateral migrations but no net 
lateral movement (Eckstein, Bailey & Shapiro 1977; Goldsmith & Mason 1967). 

The present paper provides a theory to predict the viscous interactions of many 
neutrally buoyant spheres, suspended in Poiseuille flow between flat plates. This 
theory shows the effects of higher concentration of particles in shear flow. The theory 
indicates circumstances under which net lateral migrations will occur, and is applied 
to a cluster of spheres straddling the centreplane of the flow. Computer experiments 
show that noticeable lateral migrations occur and, more importantly, that the cluster 
spreads axially in the flow. These movements occur even when the cluster is so 
structured that every particle initially sits on streamlines of equal velocity (of the 
undisturbed flow). This hd ing  has implications relevant to lateral migration based 
chromatography schemes. 

2. Statement of problem 
Consider two or more neutrally buoyant spheres suspended in a fluid flowing 

between two parallel plates. Far from the bodies the flow field is Poiseuillean. Let 
the bodies be well separated and the particle Reynolds numbers small. The forces 
and torques on each sphere will arise from the imposed pressure gradient, the ‘slip’ 
velocity relative to the undisturbed flow, the imposed shear near each body, and 
correction fields due to the wall and the other bodies. 

Let a be the characteristic body radius, U the scaling of the undisturbed flow (its 
maximum velocity) and d the channel width. Furthermore define ~ = a / d  and 
Re = aU/v,  where v is the kinematic viscosity of the flowing liquid. Viewing the 
problem as a fixed laboratory observer, and requiring 

Re 4 K (2.1) 

the governing equations are approximated by the familiar Stokes equations 

I p v ‘  - Vp‘ = 0,  

V*v ‘  = 0, 

u’ - d ( r )  ( r + o o ) ,  

0’ = vA +f& x ra on body A, 

v’ = VB+12g x r; on body B, 

etc. ... , 
u’ = 0 on walls, 

where VA and i2; respectively describe the dimensional translation and rotation of 
body A, ra is the position of any point on the surface of body A relative to its centre, 
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,u is the viscosity of the flowing fluid, v is the total velocity field and p the total 
pressure field. The quantities are subscripted according to the identity of the 
corresponding sphere and the prime denotes a dimensional quantity. 

3. Solution by asymptotic expansion 
The governing equations may be further approximated by an asymptotic expansion. 

The leading-order solution of (2.2) is simply the summation of the flow fields induced 
by the response of each sphere to the Poiseuille flow in the absence of the other spheres 
and the walls. Once the asymptotic behaviour of this elementary field is known, 
specific scaling restrictions can be developed for the distance of the spheres from each 
other and the nearest wall such that the leading-order solution is agood approximation. 
This elementary field is defined by dimensionless equations where the coordinate axes 
translate with the sphere but do not rotate. The position vector relative to this 
coordinate system is denoted by r. 

v2v - vp = 0, 

v-v = 0, 

v - u(r) (r-+m), 

v = 5 1 , x r  onA. 

v* = v-u,  
Define a disturbance flow field 

1 
P* = P - P J  

where (u, P) represents the laminar, undisturbed flow. Substituting (3.2) into (3.1) 
yields 

\ v2v*-vp* = 0, 

I V'V* = 0, 

v * - 0  ( r + m ) ,  
(3.3) 

v* = OA x r-u(r)  on A.) 

Equations (3.3) may be solved using a polyadic-velocity and pressure-field 
formulation in which the response of the sphere to the undisturbed flow is a sum of 
polyadic functions of position, each multiplying a particular polyadic derivative of 
the undisturbed flow evaluated a t  the centre of the sphere (Brenner 1964). If the 
sphere is neutrally buoyant and torque-free, the sum is greatly simplified. In  
particular the terms associated with the slip velocity (including the Stokeslet) and 
the vorticity of the fluid are unimportant. The resulting expression for the velocity 
is 

8: = -2 ;3.~~r,r,(eA),,+O(r-4)O((Vv)A)+O(r-S)O(uA)+O(r-a)O((~~u)A), (3.4) 
5 1  

where 8, is the rate of strain tensor of the undisturbed flow at A, 

( e A ) i j  = t((vi uj)A + cvj %)A), (3.5) 

and the polyadic function multiplying eA in the leading term of (3.4), - 3 ~ ~ )  ri r j rk ,  
is defined as the strainlet. Once the elementary solution has been found, the geometric 
restrictions of the asymptotic expansion may be developed through the introduction 
of parameters and an order-of-magnitude analysis. 
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There are three lengthscales: a, the sphere radius; 1, the characteristic interparticle 
distance; and d ,  the channel width. Define the quantities 

a 

a 
K E : d 9  (3.7) 

and the following stretched coordinates : 

r” = K r ,  (3.8) 

P = /3r. (3.9) 

Since the undisturbed flow field varies over the width of the channel 

( 0 U ) A  = o(1). (3.10) 

Using (3.8) we find ( v u ) ~  = O ( K ) .  (3.11) 

Similarly (vvu)~  = O ( K 2 )  (3.12) 

and from (3.8) and the force balance (Brenner 1964) 

UA = O ( K 2 ) .  (3.13) 

We wish to find the influence of one sphere on a second sphere and so (3.4) must be 
rewritten in terms of P. Therefore, using (3.9) and (3.11)-(3.13) we have 

(3.14) 

To determine the magnitude ofthe wall effect, (3.14) is transformed to the fcoordinate. 
Using the wall-effect analysis (Cox & Brenner 1967) we find that the wall-induced 
disturbance velocity is O(Ks). Not only will the presence of the wall give rise to a term 
in the asymptotic expansion but the sphere nearest each sphere previously analysed 
in the elementary problem will induce a flow field. The neighbouring sphere is 
neutrally buoyant and free to rotate and thus responds to the strainlet field just as 
the sphere responds to the Poiseuille flow. Furthermore the induced flow field is itself 
a strainlet field. Thus using (3.4), (3.5) and (3.9) we find that the ‘nearest-sphere’ 
term in the asymptotic expansion is O ( K / ~ ~ )  in the vicinity of the central sphere. 

If we require 
p”41 (3.15) 

and K f l 4  1, (3.16) 

the smaller terms in (3.14) as well as the nearest-sphere terms may be neglected. If 
we require 

K2 4 $, (3.17) 

the well-effect terms in the asymptotic expansion may be neglected. These criteria 
are not unrealistic. They would permit a value of t9 x 0.1 and K kc 0.01, which are 
quite reasonable for flowing suspensions such as pulp ‘fines’ or living cells in aqueous 
media. 

This order-of-magnitude analysis has relevance to discussions of inertially induced 
lift. Previous researchers (Cox & Brenner 1968) have analysed the single-sphere 
problem for the case of 

R e G K - 4  1, (3.18) 
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which is equivalent to that used here. They found convective acceleration effects of 
size O(ReK2). Subsequent theoretical work for multisphere problems (Schonberg, 
Drew & Belfort 1986) has shown that local and convective acceleration effects are 
of the same size. Therefore the viscous effect discussed here for the same Reynolds- 
number limitation (3.18) is much larger than acceleration effects. Thus if a near- 
creeping-flow problem involves two or more spheres in certain configurations the 
complex perturbation in Reynolds number need not be done. 

In conclusion (3.14) can be recast to indicate pair-wise interaction as 

(3.19) 

where uI"; is the induced velocity on body i due to body j; Ff, is the position vector 
of body i, relative to body j; k refers to the component in the k-direction; and s, is 
the rate-of-strain tensor of the undisturbed flow at body j in terms of P. 

4. Application to Poiseuille flow between parallel plates 
Consider figure 1, which defines two coordinate systems, one fixed on the wall and 

a second moving amidst the spheres, with a velocity prescribed by the undisturbed 
flow field. Having defined the local coordinate system scaled by the interparticle 

(4.1) 
distance we have 

where z; defines the location of the origin of the local coordinates. Using (3.8) and 
(3.9), (4.1) can be rewritten as 

(4.2) 

Substituting this into the velocity profile for Poiseuille flow yields the following 
expression for the undisturbed flow near the cluster: 

1 
d z2 = z;+-y2, 

K 
z2 = z;+-y2. 

B 

and the velocity gradient as 

Using (3.19), (3.5) and (4.3) yields the interaction velocity 

In order to see effects due to the parabolic shape of the undisturbed flow we require 
the interaction velocity, as well as the slip velocity, to be much less than the passing 
velocity, calculated using (4.3) ; in the direction of el. Thus we assume 

184 4 K .  (4.6) 
Note that this restriction is practically subsumed under the previous restrictions. In  
practice spheres may be of different size. To allow for this define 

radius of sphere i 
a 

b, = (4.7 1 
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FIGURE 1. Definition of fixed and moving coordinate systems. 
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FIGURE 2. Two-body interaction near centreline of velocity profile. 

where a is the radius of the median sphere. Whence (4.5) becomes 

Trajectories of a system of particles in plane Poiseuille flow can be obtained using 
Euler's method, taking advantage of the linearity of the Stokes equations. 

5. Results 
The preceding development was implemented on an IBM 3081D computer. 

Computation times were very short, even for arrays of 10 spheres. All experiments 
were done in the ys = 0 plane. Computer experiments were first performed with two 
spheres. Spheres placed on streamlines of differing velocity, in terms of the undisturbed 
flow, had little effect on one another because they spent so little time in the same 
region. Spheres placed on either side of the centreline of the velocity profile in a 
symmetrical fashion had no effect on each other. However, if one was slightly 
downstream of the other the leading sphere migrated toward the centreline while the 
trailing sphere migrated away. The extent of these lateral migrations was limited 
because the leading particle moving to a region of higher velocity accelerated while 
the hailing particle decelerated. Therefore, the particles eventually separated, 
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FIQURE 3. Interaction of a single sphere and a cluster, symmetric about centreline; 
initial position. 

(0, -0.3,O) 
0 

FIQURE 4. Distortion of single sphere and cluster (lateral migration exaggerated). 
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FIQURE 5. Initial position of a cluster of ten spheres straddling the centreline symmetrically 
(spheres not to scale). 
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FIQURE 6. Cluster at (a) time = 600 and (a) 1400 showing migration of spheres and stretching 
of cluster. 

sufficiently reducing significant interactions. Using /3 = 0.05, K = 0.01 and placing 
the spheres 0.3 from the centreline, they migrated 0.015 laterally (on the interparticle 
distance scale) as can be seen from figure 2. 

Experiments were also conducted with ten spheres of equal size. In one experiment, 
nine spheres were placed on one side of the centreline, all located 0.3 from the 
centreline and 0.6 from each other. Meanwhile, a tenth body was located 0.3 from 
the centreline on the other side, having the same y1 coordinate as the fifth body in 
the train of nine, as shown in figure 3. The nine bodies had little net effect on the 
tenth while the tenth had a noticeable effect on the other nine. The four leading 
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FIGURE 7. The growth of the length of the cluster shown in figure 5 with time. 

spheres migrated toward the centreline, with the spheres nearer the tenth one 
migrating faster. Thus these nearer spheres accelerated and approached the farther 
leading spheres, compressing the line-up. Computation ceased when the spheres came 
too close, as the model requires x to be of magnitude O(1). Due to this shortened 
computation time the lateral migrations were relatively small. The trailing spheres 
were similarly affected with the pattern compressing as the nearer spheres decelerated 
(see figure 4). 

In  a second experiment, five spheres were placed on each side of the centreline. The 
spheres were so lined up that they formed a double line of five pairs two abreast, as 
shown in figure 5.  The leading spheres migrated inwards while the trailing spheres 
migrated outwards. The particle pairs remained ‘in step’; however, the leading pairs 
accelerated downstream while the trailing pairs decelerated. Lateral migration of one 
of the leading spheres was nearly the same as in the two-body experiment. These 
dramatic results, shown in figure 6, have interesting implications. Notice from figure 
7 that the ‘smearing’ process is at  first slow but speeds up as the spheres migrate 
laterally. When the spheres are sufficiently separated, interactions are weakened and 
the ‘ smearing ’ rate settles to  a constant as the only mechanism is convection by the 
undisturbed flow. 

Finally a train of five particles was permitted to pass a second such train, on the 
same side of the centreline, as in figure 8. There was little effect on either train, they 
merely jiggled as they passed with very small amplitude and no net displacement. 
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;tL 1 

0 . 0 . .  

FIGURE 8. Clusters of spheres passing one another have little effect. 

I 

FIGURE 9. Fore-aft symmetry in a plane around body A. 

6. Discussion 
The results in this paper have some interesting implications for chromatographic 

separation processes. For large particles, where Brownian diffusion is negligible 
compared with advection, these findings are directly relevant to the resolution for 
separating solutes. For example, lateral-migration-based-chromatography schemes 
(Altena & Belfort 1984) rely on particles aligning along a particular or several closely 
spaced streamlines on either side of the centreline. Thus axial dispersion resulting 
from lateral migration due to viscous interactions will spread a cluster both forward 
and backward from the centre of mass of the cluster, effecting its particle concentration, 
recovery and resolution. Consider (4.8) as applied to the lateral direction, k = 2. 
Consider a sphere A being influenced by two other spheres B and C having the same 
yz values as one another but different from A. Further let the spheres be of the same 
size. Constrain the spheres to the ys = 0 plane and let x1 from one sphere be -xl of 
the other, as shown in figure 9. Then it is clear from (4.8) that there is no net effect 
on sphere A. Therefore, if there is fore-aft symmetry of particle concentration in the 
duct, there should be no lateral force of viscous origin on any single sphere. In 
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FIGURE 10. (a ,  b ) .  Two kinds of fore-aft symmetry in three dimensions. 

practice, at any particular moment there is not foreaft  symmetry in the duct, 
although in a time-averaged sense there is. This is substantiated by experiments 
(Goldsmith & Mason 1967) in which a dilute suspension of spheres was subjected to 
Couette flow. The motion of a single sphere was monitored as its experienced a 
succession of interaction events. While there were momentary lateral migrations these 
were small and furthermore there was no net migration. Net migrations occurred only 
in concentrated suspensions. 

The previous discussion can be extended to include effects due to differences in y3 
position amongst the spheres. As long as the magnitude of the x3 coordinate for B 
and C is the same (so that x is the same), the previous result holds (see figure 10). 
In practice we need only require fore-aft symmetry along every plane, of constant 
y3 value, in the duct, to ensure that there are no lateral migrations. 

While fore-aft symmetry causes cancellation of effects, an asymmetry may induce 
lateral migration and spreading down the duct. This can be seen in the experiment 
shown in figure 5.  In  practice spheres near the leading edge of a cloud of particles 
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flowing down the duct will migrate laterally. Spheres near the trailing edge will also 
migrate. The configuration shown in figure 5 is not an arbitrary configuration. Under 
the influence of the inertially induced tubular-pinch effect, spheres will migrate to 
particular streamlines depending upon their size. Therefore there will be spheres on 
streamlines of like velocity on opposite sides of the centreline. This is the basis of 
inertially induced ‘chromatography ’ (Altena & Belfort 1984). Therefore there will be 
lateral migrations of viscous origin occurring simultaneously with those of inertial 
origin, While the magnitude of the viscous migrations seems small it should be 
remembered that, at  low Reynolds numbers, the order of magnitude of the viscous 
effect is much larger than the inertial effect by 1 to 1; orders. This phenomenon might 
impair such migration based separations as it has the effect of an enhanced axial 
diffusion coefficient. 

In  summary, as long as the spheres are not too close to the wall, and the Reynolds 
number is sufficiently small, first-order spheresphere interactions will be important 
only under situations of axial asymmetry in the distribution of spheres. In this case 
these interactions will be at least as important as inertially induced interactions. 
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